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ABSTRACT

During this funding period, a semi-classical macro-kinetic theory that describes the

dynamic behavior of carriers in a semiconductor under the influence of space-time
varying fields has been formulated. The macro-kinetic model is considerably easier to

implement numerically than Monte Carlo methods or those based on the Boltzmann

Transport Equation (BTE). Moreover, the macro-kinetic model requires orders of

magnitude less computer time to run. A Monte Carlo method has been developed for
obtaining the electron energy distribution, transport parameters, and rate coefficients

in multi-valley semiconductors. The procedure requires an order of magnitude less

time than conventional Monte Carlo techniques.
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1. OV'ER\'IEW OF RESEARCH PROGRAM particularly important for describing high field transport
in "multi-vallcy" semiconductor materials such as gallium

I. INIRI))tCTION arsenide (GaAs) (see next section).

I ci \c r scm lconductor S~kitches (I IPSS) arc
li, n-i', lrI'e tenticonfor thcris (theyS) oarc A single valley macro-kinetic model has beenlu~ ii~a. ., ..J,_ru luattntion for the promis.-e thcv 0l'f*kr

o 1-3 i s developed and compared to exact Monte Carlo
simulations of carrier dynamics in GaAs and the results

thc' fat 1tt %\ith setiiiiondueting materials as. the ha,c been found to be in reasonably good agreement.
mcdiurn, it Ispossible to obtain: (a) high current The macro-kinetic model is considerably easier to

dniieo~ er lrcareas, 'h) ig,,h carrier production andrelaxtion rtC (r) conductiviy modlarrerprdution ead implement numerically than Monte Carlo methods or
rcldtx.ition raJte. (c) conductivity modulation over several those based on the Boltzmann Transport Equation (BTE).orde rs of magznituode, and (d) high dielectric field Moreover, the macro-kinetic model requires orders of

~tenth.IIPSS miay be deveoe that have lowert yelpd magnitude less computer time to run. This theory has
inductance and forward drop, higher rep-rate, longer been published in a paper that appeared in the Journal of
lifetime, and are more compact than comparable gas Applied Physics (August 1988) and is presented in Section
switchcs. In addition, simple and compact (re-usable) III. This theory is now being used to develop a three
opening switches and other pulse power devices (such as valley moment model of carrier transport in multi-valley
frozcn wave generators) seem to be realizable with
semiconductor switching technology.3  Optically or si nt ors.
electrically trig,_gered bulk and junction devices and A Monte Carlo method has been developed for
externally controlled bulk devices are being investigated in obtaining the electron energy distribution, transport

a variety of ezcomctries and covering a wide range of parameters, and rate coefficients in multi-vallcy
parameters. 1  Semiconducting materials that have been semiconductors. The procedure requires an order of

considered are Si, Ill-V's, and diamond. magnitude less time than conventional Monte Carlo

With AFOSR support, our research activities have techniques. The technique has been discussed in a paper
that appeared in the Journal of Applied Physics (April

focused on the basic physics of HPSS devices. Our aim 1988) and is presented in Section IV. At present, a
has been to develop a quantitative understanding of the number of papers relating other results that have been
role of the various microscopic processes, material obtained are in preparation.
parameters, trap dynamics, and space-charge in shaping
the behavior of fIPSS. This knowledge is necessary for Published Papers:
guiding the scaling of the present low power technology to
h r1. "Nonequilibrium Macroscopic Models of Carrierthe regime of interest in pulse power applications. Dynamics in a Semiconductor," J. Appl. Phys. 64,

Moreover, with sufficient understanding, it may be D 1n8ic it a nd C. App.
possible to tailor the electrical properties of 1220 (1988) (with M. Cheng and C. Wu).
semiconductor materials (beyond that of density 2. "Electron Energy Distributions, Transport
modulation) for specific applications. During this contract Parameters, and Rate Coefficients in GaAs," J.
period, we have developed models for describing the Appl. Phys. 63, 2322 (1988) (with M. Cheng).
dynamics of the carriers under the influence of space-time A number of presentations were also made during this
varying fields. In the next section, a summary of the period at various workshops on HPSS sponsored by both
accomplishments made during the period of this contract ONR and AFOSR. Abstracts for papers presented at the

* is given. Sections III and IV are devoted to a detailed spring meeting of the American Physical Society are given
discussion of the results obtained, in Section V. Also during this period, one student (NI.

II. REVIEW OF ACHIEVEMENTS AND Cheng) received his MS degree and is currently working
ACTIVITIES DURING THE CONTRACT on his Ph.D. We were invited to visit a number of
PERIOD government laboratories that have shown interest in our

results (Harry Diamond and EDTL/Fort Monmouth
During this past funding period we have accomplished Laboratories).

S the following: Lbrtre)

(1) A semi-classical macro-kinetic theory that 1. N1. Kristiansen and W. Portnoy, Workshop on Solid
describes the dynamic behavior of carriers in a State Switches for Pulsed Power, Tamaron,
semiconductor under the influence of space-time varying Colorado, January 1983.
fields has been formulated. It is essentially a "properly 2. B. Senitzky, Workshop on New Direction in Solid
closed" set of moment equations. That is, a macro-kinetic State Power Switches, Polytechnic University,

distribution is introduced and the equation of evolution St at e N w , P.

* for this distribution is used to close the moment equations. Farmingdale, NY, 1985.

- 3. K. H. Schoenbach and M. Weiner, Workshop on
In this fashion, the transport parameters and rates that Optically and Electron-Beam Controlled
appear in the moment equations can be determined from Semiconductor Switches, Norfolk, VA, 1988.
first principles (in particular, without phenomenological
assumptions regarding the form of distribution). This is

• -1-



Ill. NONEQUILIBRIUM MACROSCOPIC
MTODELS OF CARRIER DYNAMICS IN A
SE.NM ICONI)UCTOR
I. INTHODUCTION iii- I'lhc first approach is closest in spirit to a deriva-

it 11sCtd on first principles. This is important since it can
l, d, liaittic b',. or ('t free c,rrier,s In1 se ntcotndlic- 10% id _'guidance as to where the model is likely to fail

t,'r tinder the influetnec of a field m1a,, he describCd in the. In the next section, a mathematical formulation of the
enti-cLn1(i,.cl rii-e b,, I the cint-lperidnt ditrihutioi problem and the foundation for an approach to its solution is
tctio.t R,.r,t ) t,,here K is, the c._t icr mminticttum, r 1s its presented. This approach is based on the fact that the mo-
posit i,,., and t in time) Given t lie i nit ial ', ate f the carri - 1m1it Iequations vary in a slower space/time scale than the
ers. the distributionl function at any other itite may he ob- BTE. Since little is known about the properties of the scatter-
tamed from eithei the Boltzmann transport equation img operators in the BTE for the case ofa semiconductor, we

IBTE).' ' or from Monte Carlo simulatLons." When the have used the physical knowledge derived from the moment
fields are changing in space time it is. in general. very difli- quations to implement an averaging scheme over the fast
cult to obtain the solution to the BTE. Moreover, the Monte .ariations of the BTE. It is shown that it is sufficient to use
Carlo appoa,ch, although .*1;,p!e to itoplemel't, is very time the characteristic times of the moment equations to effect a
consuming and in sonic cases (depetndine on the number (fl" truncation scheme and prescribe a procedure for arriving at
test particles used i prohlbiti\ e Oite the distribution firec- a closed set of equations. This approach has also been dis-
titon is fonild. des,,ird macroscopic properties ( which can be cussed in connection with electron dynamics in gases.22 In
measured) call lie calulated ,h averaging theCOrrespondig Sec. III, closed sets of moment equations are derived for
microscopic propertics o\cr the distributin.'" three levels of description. These equations have b-en used to

An alternate approach for obtaining the macroscopic describe the behavior of electrons in GaAs subjected to step
sttIc of the carriers is in terms of mnonients O the distrih- fields. Although, the method presented in this paper can be
ion. In general, an exact descriptionl ofthe state requires an used to derive a multivalley macroscopic model, a single-

infinite set of moments (this is equi alent to the fact that we % alley model has been used for GaAs. The results for the
l need an infinite set of moment,, to specify the distribution t. av erage velocity and mean eneigy obtained with this formu-

These moment, obev a hierarchy I infinite set ) of equationts lation are compared with those obtained using Monte Carlo
obtained by takingi moments of the PFF." It will he assuned methods. For the Monte Carlo calculations, a three-valley
that for the situations of interest a finite set ofmoment equa- model for GaAs has been used. The results from these two
tions can be used to describe the heha, ior of the carriers." To models are in reasonably good agreement. However, the sin-
assess the accuracy of this finite set, the results for some gle-valley model in this case does not provide an accurate
representative cases must be compared with those obtained description of the behavior at electric fields above the thresh-
from the exact distribution function, old field (about 3.5 kV/cm for GaAs) for the Gunn effect

This paper focuses on how to obtain a closed set of mo- due to strong intervalley scatterings. Some concluding ic-
ment equations which are valid in the presence of space-time marks are given in Sec. V.
varying fields. This subject has recently received consider-
able attention because of the deficiency of the drift-diffusion II. FORMULATION OF THE NONEQUILIBRIUM
equation in the analysis of high-frequency and submicron MACROSCOPIC DESCRIPTION
devices. " The drift-diffusion equation is based ott the as- For simplicity in notation (so Ihat stibsC ii pins rcti.ri ng
sumption that the carrier momentum distribut ion i' in equil- to different types of carriers need not he introduced ). the
librium with the local, instantaneous, applied field. This re- discussion will focus on the dynamics of electrons in a single
stricts the validity of the equation to slo\kl% ,,arying fields valley. A similar treatment holds for electrons in other val-
and large-size devices.'' However, for (semiclassical) de- leys (also for holes in the valence band), with proper consid-
vices with ',cry small spatial and/or temporal scales, non- erations given to interactions between the various valleys
equilibrium phenomena, such as velocity overshoot, 1". and types of carriers. Extension to multivalley description is
dominate the transport behavior of carriers. In this case, the straightforward. The situations of interest may be describeduse of 3TE or an equivalent nonequilibrium set of moment by a distribution function in (K,r) space,](Krt). This fune-

equations is essential. tion obeys the BI E; namely,'-:
A ii umber of approaches have been proposed for obtain-

inwc a closed set of moment equations. These approaches can d, f+ v.V, f+ (q/l E.V, ]= 1(1). (I)

he divided into three general categories, each based on the where v is the macroscopic carrier velocity, IE -/ E,(ra) is the
respective assumption that (a) for small electric fields the electric field (either externally applied or arising from space
distribution function can be represented by two terms in an charge), and I (f) is the linear scattering operator. v is de-
e expansion in terms of Legendre polynomials,'"' (b) the fined as the -space gradient of the microscopic energy c;
distribution function is a displaced Maxwellian' 7- ' when that is, V = - 'VE(K). No specific form for the operator I
the carrier concentration is sufficiently high, and (c) the need be assumed at this time This operator describesa nim-
unknown variables and coefficients appearing in the mo- ber of physical processes (interactions between carriers and
ment equations are assumed to be functions of mean energy lattice) which occur in different space-time scales. The
only and are obtained from phenqmenological equa- scales of interest are the fine-grained (kinetic), where

-2_-



'hiii ¢'s occtr it i i, , tl I I Il " il t'. .' 
i It AkC I_'cI is iti e r, c sr m lallcr than those defined above. Note

[ i ii5 -'Tl; .i l I)L'si '. ,'> I. t ', x i '1 rli lN1 ill1 l i . III 2il l. T " , i1| a seniconductor."
!i ,1i .i. i<'i,, ''I; ... L'\ \I. lie iiiiinher of nioniClts in the state vectors, is

\t III: .,' I .II I. "i: siT. ,I M ic t i' ii 1, i t(c i iicd 'oin physical consideration, and from the scale
InilJi 1tictor is l .'1 n Ih li tclc I \ dc i lhiiin itilik i- )l'I lic desired description. Alternatively, the number of mo-

sikn ) S . xN likuse kCO: Oi ilil5 li' llii l ic'lsl, ii" ih' i' I lii il'il0', I1il l iI t i l Cu L dccr'nincs tIne coarseness ofthe macro-
lo IIT . S, I' m r..'t ; I , I \ Ilk I , m i k .. L i,n dvci ilption. This is because tlie model is only valid for

Nrion'ud! to a iTIlliciil ,i1 1 ie ilisi I Ib iii t i, I I ixi\ .1- .i iiit ,t.h1 ;It 1 " I li order of' Ihe smallcst characteristic time
cil r, vct. or, or iell ' .111d \ Cl Sfl t I[ 1 hc' IhIti lc's Ciil;ui iit'l in a iIhli c set ofec(tialions.

moilel kcpt iII III" dcrit0ioi1. I he 'Lltlill,)iiN I01 lit. lilw- Iiiillv, note that the distribution function f which
nie ts are obtai ied by takiln. :ppioprint cl_ i %cyillcd title- sii lics I:.i. ( I ) contains information to all orders of time

Zrals (in i space) of Eq. I 1. The CcIlatiOls It0 the ir',t grcater than a microscopic scattering time. .2.2' The micro-
three moments [namely, density ,(r~t). mcn energy ci r.0. scopic scattering time is, in general, much smaller than the
and average momentum K(r.t) . are characteristic times in any finite set of moment equations.

an + V (nu) = vn, (2a) [hile distribution function f contaiis "too much informa-
tion" coinpared to the state vector S., in the scale of thea, (n) + V" (e-v) - qnu -- - -2) desired description. That is, the unknown variables and pa-

a, (nk) + V (K ) - qE/n - n,,,k, (2c) ranicters in the SN description do not follow the fast varia-

wkhere the bracket implies an average over the dis ribution, u tions in f Thus, to obtain a determinate set ofmoment equa-
is the average velocity [ .lvfd = Fi ' (k')fdK. tions, it is sufficient to use an "f"which only contains infor-

and v', v,, and v,,, are the (space-time dependent) cffective- mation in the scale of the moment equations. This

carrier-gain, energy exchange, and momentum1 exchange distribution, the macroscopic distribution function f,,

frequencics. These frequencies arc defined h\ obeys a "macroscopic-kinetic equation." The equation of
evolution forf,, together with the finite set of moment equa-

A 3 tions, form a closed set. This set can be used to describe the
in = (f )dK, 3 nonequilibrium dynamics of the carriers in a time scale cor-

responding to the characteristic times of the moment equa-
', = 6 ( )1( / dK, 1) tiliso This dcscription is termed nonequilibriumbecausef,

I may be space-time dependent. In fact, in the time scale of the
- I%,) dK ( Jdi. 3) inoniclnts, it is equivalent to f

A number of procedures can be used to arrive at an

Since it is difficult to ascribe physical significance to higher- equation forfM. The objective in any of these procedures is to
ordcr momcnts, their equations ofevolution are seldom writ- change the scale of Eq. ( 1 ) from the microscopic to that of
tc. the finite set of moment equations. 2 . 7 In this paper, the

Unfortunatcly, any finite set ofmoment equations is not technique proposed by Bogoliubov is used.26 A problem
detcrmiatc.' For example, the set of Eqs. (2) contains un- arises when trying to solve the equation forfl,. This has to do
kiown averages over the distributions (quantities in brack- with the issue of assignment of initial values tofM. In this
tls) mind iiknown rates [Eqs. (3)1. To calculate these un- paper, it will be assumed that the moments offM correspond
kiitown, aniid thus arrive at a determinate set of equations for to the (approximate) macroscopic state. To solve the equa-
S , f needs to be found. A similar problem arises in classical tions forfM, it is still necessary to know the various micro-
gas kinetics.2 2-" and in electron kinetics in ionized gases. 2  scopic scattering processes for electrons in a given semicon-
In contrast to classical gas dynamics and in similarity with ductor. After solving forfM, Eqs. (2) and (3) can be used to
Iomized gases, very little is known about the properties of describe the electron dynamics in the semiconductor (see
either I('), or the operator (q/¢i)E. V. - I(f) in Eq. ( I ). Sec. IV). The procedure outlined above is used in the next
Becaue of this, a more physical approach is proposed for section to obtain closed sets of moment equations valid in
closing the moment equations. The key to this approach is three different regimes (time scales).
the use of information from the macroscopic equations to
effect the truncation. This is outlined below.

First, the moment equations are ordered according to III. THE NONEQUIUBRIUM MACROSCOPIC
their characteristic scales. This step requires a priori assump- EQUATIONS
tions about the relative magnitude of these scales. They can The approach outlined in the previous section will now
be made from physical considerations. In any event, the or- be used to obtain the nonequilibrium macroscopic equa-
dering that is used needs to be confirmed after the solution tions. The characteristic times of the macroscopic equations

* has been found. Equations (2a)-(2c) have been ordered ac- [Eqs. (2a)-(2c) ] can be used to define various levels of
cording to their characteristic times. These times are (in de- descriptions. The most coarse-grained description is valid
C'c;ling inagniitide): r (effective carrier production/loss for times in the order of r (see Sec. II). From Eqs. (2a)-
tIe), r, (energy exchange time), and -r,, (momentum ex- (2c), since v<vE < v,,, there is a time for which the mean
chlnge time). The higher moment equations would also energy and average momentum of the carriers have relaxed
hac e to he ordered accordingly. It is assumed that their char- to a state of quasiequilibrium where their subsequent vari-
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ation is in the scale of r, i.e., the scale of the density %aria- d, f J %, v dK"Vn + I(f )dK
tions. For such times, the macroscopic evolution of the s.s- f IJf
tern can be described in a single time scale 7. Thus , V* 'Vi, f - (qE/i)' V. f,, I( f (7)
S, = [ n(r.t) ] that is, the macroscopic state ector contains If the deviation from spatial uniformity is small, a parameter
a single moment, the density. call hC introduced into Eq. (7) which is indicative of this

Progressively less coarse-grained lc\ ek of dcsciiptioil ThsUlnptlon. Using 5 as a basis for a perturbation expansion,
can be defined by systematically using an additional moment , i

the distribution may be expressed as
in the state vector. This assumes that the characteristic times
in the moment equations are not degenerate (i.e., character- , ", (1.11 = f ' (K,1).

istic times are not equal). In this case, these are times for
which the higher-order moments have relaxed to a state in which substituted into Eq. (7) results in the following equa-
which their scale of variation is the same as the moments tions:
being used in the characterization of the macroscopic state.
If there was a degeneracy (for example, v, ' = v,,, I), then V.6" d , -f d, vdA.V'n
the corresponding moments must be collectively taken as I,

components of the state vector. For cases of interest (carri- - r
ers in a semiconductor), the characteristic times are not, in + ', ' J ( K

general, degenerate.' Thus, the next less coarse-grained level
of description is in terms ofS2 = [n(r,t),-(r,) 1. This is val- , (d,,f" "Vfn)

id for times in the order of v,- . From a practical point of
view, the least coarse-grained description of interest is in 6' -- q E V = 6(J, (8)
termsofS3 = [n(r,t),-(r,t), (r,t) ], which is valid for times h II (

of the order of v,, .  where r-6 'r'; V- (5'. From Eq. (8), the zeroth order
To make the equations that define tho macroscopic equation is found to be

state, S,, i= 1,2,3, determinate, the rnacrosc,)pic-kctc
distribution,f, must be found. The time scale olf, musthc he q/Ei)'V ./"..(Kn) I( l(f -,, / f f I(f i, )dK,

consistent with the level of description. Thus,,i macroscopic
equation of evolution forfM needs to be derived and solved. hi chI has Ihe general solution

This is carried out below for each level of description of in- J ( K:, ) =./" 'i. (K)n(r',t), (9)
terest; namely, S,, i = 1,2,3. whrcc .",.' K) obeys Ihe equation

A. The S, state (defined for times -v 1 (q/)E'Vf' ,,.(K) !( ."..) -f,(K) F I d /", hdK.

In this case. only Eq. (2a) and the equation for
=,J. '%I in the - time scale are necessary to describe the 10)

c\ olution of the carriers. These two equations form a closed with the condition
sct. The equation for f, is obtained by changing the time
scale of the BTE [ Eqs. ( I ) ] from the fine-grained to a -r f
scale. [this can be achieved using a technique introduced by f

Bogoliubo,." Mathematically, the change can be accom- Note that thc same symbol has been used for f (K.n) and
plished by the following relation: f',.. (K). The context in which they are used determines the

f(K, rt) = f,, [K,n (r,t) 1. (4) argument. Equation (10) has the form of a steady state, ho-

That is. in the -scale, the space-time dependence of the dis- mogeneous Boltzmann equation, and f ., can be identified

tribution is riot explicit, but implicit through a dependence as the (zeroth order) steady-state distribution of a homo-
,i the density. The equation governing the changes in f geneous assembly of carriers in a field defined by the local

a b value of the field. This is the distribution that exists at (r',t)
changes n f can be written as if local equilibrium with the field is assumed. A number of

techniques are available for solving this equation.' f ',, can
). f - dJ f k dn, (5a) also be obtained using Monte Carlo methods." Noting from

V, , o, J, V,n, (5b) Eq. (9) that d, f ,,,, (K,n) = ,, (K), the equation of 0(0) is

V. f 4 (5c) found from Eq. (8) to be

Subsequently. the subscript r is to be dropped from the space qE V,. f I( f ) ± f,+ I( f 1K
gradient. The time derivative of the density may be eliminat- f

ed from Eq. (Sa) hy using Eq. (2a), rewritten in the form = ff v dK'V'n

, , f ,f ,, V dK V /, + f I(f ', )dK. (6) 3

After placing Eqs (5) and (6) into Eq. ( I ), the following f f R f A, (12)

equation is obtained for the distribution: where the last term is an approximation to the correspond-
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md call then be used to determine the state S, at t,I m~ttm l~ ,! 2). m~ trat~z lw '.ht-~m ".~l.' ',A more accurate expression than given above for the
.: ,,+r,'. tu,,,lu ,,t , Fu 12'm: , b tt m ll\\,.i~tc~la,, ,.t,,t Ihui~ n first order ( J'., ) can be obtained by explicit-

1,, tkin to account tile space-time variation of the electric

0 :,, ~ ~ ~ ~ ~ ~ ~ fcd IK,: (;.:.;.:, .5 kk hat is, instead of Eq. (4), let

,, S th, R tt q 12 an,! 0' i, !Ile t f.r,t) =f ., K,n(r.:), E (r,t)].

ol Iie hncarl,'cJ I~. i nl . ' q I ., Following the steps subsequent to Eq. (4), an expression for

S': . 4iis obtained that in first order (f, ) is proportional to
Shere thtie space and time derivatives of the electric field." Withthis approach, no specific form need be assumed a priori for

G ( f, I KII) ,!,e function.2 "" Moreover, a similar procedure
*" GK ) (,) J a canlso be used to obtain more accurate expressions for the

distribution in the S2 and S3 states (see below). This exten-
SVtK)dK" -/f (K')vi K) )d'. 14b) sion of the theory presented is not going to be discussed

further.

-- t,, I G(K.K:)-, ~B. The S2 state (defined for times -- v-')

* In this case, Eqs. (2a), (2b), and the equation for

[~~~ ,= f2 in the 7, time scale are used to describe the system..~f K) 1'~" } The procedure for obtaining the equation for f. follows

along the same lines as the procedure for f (Sec. III A).
Since Sf , d 0 Inote that fdK - n and . w J, dI has In this case, the change in scale is accomplished by the rela-
been taken to be one). the / :, *s above must satisfy the tion
conditions .'f,, K = 0. i 0.1. This implies that f(K,r,t) =f ' [,n(r,t),(r,t)]. (17)

G GdK = 0.

The results obtained abo\,e can be summarized as tol- That is, in the .r, scale, the space-time dependence of the
lows. The distribution function in the - scale satisfies Eq. distribution is taken to result from changes in the density
(8). To first order in 6. Its solution is, gPcn b\ and mean energy. Note thatf ' changes in two characteris-

) n r. 7tic time scales, -and r,. From Eq. (17), the changes in f
can be written as

're hrc9, f =a d f '9,n + .9 f a,i , (18a)

I X 1) (K ) ' (5jJ,. (K). f (18b)

This result is the density gradient expansion which has V

prc iously been a priori assumed for the distribution func- f (18c)

tin " Tle u,,e of Eq. (15) into Eq. (6) yields a diffusion- The time derivative of the density and mean energy may be
I'1e equation fL- the density eliminated from Eq. (18a) by using Eqs. (6) and (2b) re-

d.n = - (v,, - v,,).V'n + D 'V'n, (16) written in the form

,hcrc v,, - v,, is the effective drift velocity, and D is the a,i= n - 7,Of cvd.vn - f
diffision tensor under uniform field condition at the value of f M

the local field. v, is the contribution to the drift velocity f)

resulting from the fact that f (f dc:O. These quantities + qE vf dK + eI(f' )d. (19)

are dlefiled as
[The term proportional to d, In n is assumed to be small aid

V,, vf d'  v, = I(f ),, hence has been neglected in Eq. (19).] Note that in this case,
f the average velocity u is obtained from

D 6 -fvf ,,, dK. nu= f vf d. (20)

These coefficients depend on the applied field through the After placing Eqs. (6), (19), and (18) in Eq. (1 ). the fol-
f.,'s. They can be tabulated as a function of field by numeri- lowing equation is obtained for the distribution function:
cally solving for the f,'s and using the above equations.
Once these coefficients have been evaluated, Eq. (16) may - J3, f v dKcVn + 1(1 2 P3K
he used to describe the evolution of the carriers. Thus, in the
time scale, the above results correspond to nonequilibrium + df 2 -fEd V
diffusion theory. v, v, and v,, can be obtained at t+ ± using f

Eq. (3). With this information, Eqs. (2) are determinate at -f i.? v dK'V?±qE'fvf' d,

5-



(I, (I II,

-- ! :'] " / , I f w 2! to, i ri th -order indl, u. lo)]

lo ' the ,i I.' ohr:i In 1 oThtaii e 1 LI11t01 (0 t  iLl

re-utit thriIln d tor scc Eq 15I 1 i. l , d IS ,i
,kuidc That iS. lin .! , bc CxpressCd ti t i,,i oIder il ,,unlil

tv .n. - . g. . - ,, l,, (27)

v he rc
(I,',,; v, i t , = 1" (<t . (28 )

Foro, ( I-. -- E)1E-., small (or J', a slow varying

The objective for the rest of this sectiOll is 1t an ilC lat the IuncMt1io of vj ), the lowest-order solution to Eq. (27) satisfies

lowest-order solution r ; ligher-ordcr appr.xirnia(iorIS the following equation:
and the effect of the gradient terms are to be considered ill (1V (29)

the future. Thus, only the first term in this expansion xill be .. ...
retained. The equation for f/ is found to be Vhis cquat imn has tile form of a steady-state BTE with qE<.

Is tile sOulC. It is equivalent to Eq. ( 10) that arises in con-

( I( f 2,. )d, )  nection with the description of the S, state. Thus, to lowest
- order the macroscopic-kinetic distribution function obeys a

0 e' v f qE" '( d l cI I dt teadv-state BTE in an equivalent field. This observation has
.a physical interpretation. The actual field E appears as a

(q/l)E- V, , 1( ,). 23/ sirce term in the moment equations and as such causesI ( '1 lichatiges in the state S. Since the equations describe the evo-
This is a nonlinear equation for fC.. Neglecting the first lution of S, in their characteristic time scales, variations in E
term (assuming that the effective carrier gain integral is are "filtered" by the equations; that is, as far as changes in S.

small), and using the following definitions: are concerned. Thus, it is the "filtered" field which the state

=f really "sees." This "filtered" field is the equivalent field in
f . Eq. (29).

Equation (29) can be solved numerically with E, as a
v EfWI(f )d. (24b) paratneter. By requiring that

Equation (23) becomes -- f 1,1 dK,

( qEu + vg) t, /',, -V q/'lEV' fi.. = A(f .. ). a taihle for e vs E, can be generated. Moreover, using Eqs.

(25) (3a) and (24), all unknown variables/parameters in Eq-.
..\ t this Icxcl iif approximation to J' (K,n,), Eqs. (25, (2a) and (2b) can be determined as f' netlilials of .,, or

(0).and 1i9) form the closed set of equations that describes equivalently . In this fashion, ,' i(). v, - v+ (F). and

the Ceolutioni of tile system. f. . is made to satisfy the fol- u = u, (C). The system of equations describing S. is closed.
lowing normalization conditions: C. The S3 state (valid for times - v_' )

f , K() dK -- , (26a) In this case, Eqs. (2a)-(2c) and the equation for

f, =f in the r,,, time scale are used in the description of
1, d s 1. (26b) the system. In the spirit of Eqs. (4) and (17). the distrihu-

!iOn function is assumed to depend in space and time as fOl-
the solution to Eqs. (25) and (26) can be obtained as lows:

folloxs Performing a change of variables from (F,K) to f(c,r,t) =f [1,n(r,t),7(r,t), (r,i)
( .L .K ) , x h cre A

Although obtaining an equation for f, is straightforward,
K , a, t K its solution is more difficult to find than for cases S, and S.

(a, I, a iut vector parallel to E). This stems from the fact that, even in zeroth order, it is an

u, /u. equation in three variables (FlK).
In this paper, instead of proceeding to find an equation

S.for f and obtaining its solution, an approximate expres-
K - K sion for f' is presented. A more complete theory (in es-

and, using the chain rule, sence, a more rigorous derivation of the expression present-

* -6-



cd III he tihe o fibiet ot a futire paper \ icti, _, is tile nean energy corresponding to the lattice
In all , ' TtQ'l I'II. theI C I I Iwk I tit1 C II' Icrlltoi;traturet - .and v, i = c, n, are obtained from Eqs.

'I.ll'is .e 0C d , J, tl u -, i n1 eIaI Ine iC1h,,d, W th t110,C i ',I) and ( 3c with f -J"A,
I 1hod., the t,.M 1: ii cith t i It,.' r I I'[ ke In it . I cotIt hice equations have been solved numerically using fin-
I a1,N. the ".,,!i to, n for ', In at lmle step) crrcpolnds to the ite difference techniques.' At thejth time step, the mean
alppr,i:1 to CqLbritnii A O'""' iIitial distribution iI the pi- :ncirgv c( ) and average momentump( j) areobtained from
.'t 01' a hiClJ ! I c M1 X..l ,alte pr,OblCni InI ec.h tile the discreteequations, given their values and the rates at the

,tep ., IrT the .', 0S iIn the pre,.ions sect ions, it is pre,,ions time stepj-l. After substituting in Eqs. (3b) and
krnol t t Ahit ,II' ... ui,:ClIent ile. the "'Iiitial dist Ibut ion" 3c) for f [Eq. (30)1, the rates at the jth time step are

c. .1 ,. iIo I' lie It.ie slip I" lonL cuugi h ) lius, obtained frot
All 11pI1.\imTate C\rionC,,, for .Cl'11 obe'tned v as-

[1iil1 tha_ t 0 h11, C\Alutni ,ai be iiit eld h\ a iela ltion
prc,:es,,s. Let the iii.,croscopic state S. a dI I t , he kno\%n at 1 .I t I I Iaic coefficients for electrons in GaAs computed in the S, de-

,cripl, i .i, d function of E,., or equialenily, as functions ofi.
1: ,ie ' s hen the tield is t-inr Note that the ield dtoes, not __________________________________________

change in the inter ( ,t a. and that the distribution At.' , kVcm) (eV) (Z - c,)v(W 10"' eV/s) v (e)(l O' s 1)

(t i.e., tile distribution at time t ) is not the equilibri-
Im distribution fu(r tite field Ft rt Tht,, in spirit of the 01 0.319 0.011 6 2.292

02 0.033 6 0.042 16 2.684
aboe c discussion, the distribution a.t time t p wherep is a -3 0.03475 0.0906 2.796
continuous variable) can be .ritten as 0.4 0.035 7 0.1566 2.894

0,5 0.036 3 0.239 2.933
,. J, (. 0.0373 0.3413 2.95

)- - 8 [ 0.038 8 0.588 3.046

•, f r i ) t0 0.04(15 0.8064 3.103
'"I 1 0041 5 1.062- 3.13

12 0.043 1.254 3.187
%.herc v_, is the as crauc momcntuihl treqiicnecv lii 1.3 0.0444 1,453 3.216

the iter .a .I 1 1 - " ,. /t)d/,.lIhatis./'f ap 14 0045 8 1.663 3.243. I5 0.047 1 886 3.285
proaches t exponentially, due to the relaxation of' the fast Lto 0.047 6 2.112 3.317
component If , - f, ) resulting from momentum trans- 1 7 0.048 1 2.343 3.339
fer at an aerage rate v,_. The distribution at the end of the 1 8 0.0492 2.343 3.362

21 0.055 9 2.892 3.517
inter,,al is found b,, letting p = At in Eq. (301. once 22 0.062 3.487 3.534

I It is found. This procedure is to be ropcactd at each 2.5 0.070 4.285 3.638
time interxal. Note that to implement this approach f-, 5,0 0.201 7 9.3 5.714

tO 0.3127 12.53 12.53must also be known at each step. This problem has been 10.0 0.3705 21.86 20.39
discussed in Sec. III B. 300 0.408 31.98 26.64

A simple alternative to Eq. (30) is to let f ', be equal to 410 0.4-41 2 42.6 31.92
f , in the calculation of the unknown variables in the macro- 500 0.465 5 49.5 39.62

N)1 0 0.497 5 59.22 44.25
scopic Eqs. (2a)-(2c). This substitution leads to the phe- 700 0.5229 68.48 49.04
nomenological equations proposed by Shur" for space-inde-

pendent conditions.

IV. EXAMPLE: THE RESPONSE OF A HOMOGENEOUS V,(j) = [v(j- I) -e + ) (j),
CONCENTRATION OF ELECTRONS IN GaAs TO A STEP (32)
CHANGE IN ELECTRIC FIELD where i = c, m, and the superscripts correspond to rates in

In this section, the response of a homogeneous concen- the S, scales (see Sec. III C). The v,'s are obtained from
traiiin ofelectrons in GaAs to a step change in electric field Eqs. (3b) and (3c), with f=f2 . f2 is obtained using
iN iiestigatcd using the theory developed in Sec. III. For the Monte Carlo methods 2 The values for the s obtained

sake of simplicity, it is assumed that there is no particle gain; from the Monte Carlo models. : are listed in 1 e I as a fune-

that is. n(rjt) = const. Moreover, a single-valley model has tion of mean energy.

hcn uscd (ir tIhe band structure. As mentioned in Sec. I, this In these calculations, v,,, has been approximated by

nodel has severe limitations, particularly at the values of I T th e ontu echan frunyat th

lii r considration. However, the objective of this cx- ( - .This is the momentum exchange frequcyat theIk~h uner onsdertio. Hwevr, he bjetiv ofhisex- beginning of the interval. Thus, with i(j- 1), (j - 1),
Anple is to illustrate the application of the theory presented and v(- o) given, thevaluesof-(),t(j), and (j-)are

in the previous section with a "model" calculation. The evo-

lutIon of the electrons is discussed in the context of the S, obtained by solving Eqs. (31a), (31b), and (32). This pro-

littne scales. This is dictated by the time scale of the applied cedure is repeated at each time step.

field For lhis example. Eqs. (2a)-(2c) reduce to The evolution of the mean energy and average velocity
of the electrons in GaAs subjected to a step change in electric

Z +(a field is shown in Figs. 1 and 2. Two cases are shown. These
, - V. ( - L,) + quE, (3Ia) correspond to two different time dependencies of the electric

v_ + qE, (31b) field (see Fig. 3). The initial field is kept constant for a time

-7-
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(b)

I-
7L

0, a

C 2 T,me (psec)
-e FIG. 2. Evolution of the average velocity of the electrons as a consequence

FIG. 1. Evolution of the electron mean energy as a consequence of a step of a step change in the applied field (see Fig. 3). The line symbols corre-
change n the applied field (see Fig. 3). On the figures, the large dot. olid. spond to those used in Fig. 1. (a) and (b) correspond to field changes
long dash, and small dot lines correspond to the response obtained with the shown in Figs. 3 (a) and 3 (b), respectively..
SS. and S, descriptionsand MonteCarlo simulation, respectively. (a) and
(b) correspond to field changes shown in Figs. 3(a) and 3(b). respecticlv.

such that the electrons have attained equilibrium with the Carlo results [see Fig. 2(b)]. However, the results for the
field by the time the field begins to change. Also shown in average momentum are observed to relax slower than the

Figs. I and 2 arc the results obtained using: (a) Monte Carlo Monte Carlo results. This is also in part due to the fluctu-

methods, with a three-valley model 2; (b) Eqs. (31a) and ations in the Monte Carlo results at low fields for the macro-

(31 b) with rates determined from the S. state (i.e., by letting scopic rates obtained with the S 2 description. Presently, a

S= f ) and (c) th.: S, state approximation. three-valley S3 model is being implemented. The detailed

The differences between the results obtained with the S 3  multivalley effect on nonequilibrium dynamics of electrons

description and the Monte Carlo in simulation in Fig. 2(a) will be discussed in the future paper. The evolution of the
arise primarily from the fact that the S, description uses a system from the initial equilibrium state (1) to the final equi-
single-valley representation. For such high fields [see Fig. librium state (F) is displayed in (i,u) space in Fig. 4. The

3(a) I intervalley scattering dominates the scattering pro- fast transient (nonequilibrium) behavior obtained with the

cess of electrons in GaAs. It causes the slower approach of $. approximation is clearly contrasted with those obtained

the average %clocity (relative to the S, description) to the from the S, approximation (which in essence yields an evo-

equilibrium state. For lower fields [see Fig. 3(b)], a very lution through a series ofequilibriut states). As e..,ected.

small fraction of the electrons gain sufficient energy to popu- for fields changing in time scales ,- v, ', a description in

late the upper valleys through intervalley scattering. Be- terms of S, is not satisfactory.

cause of this, the response of the carrier distribution to the
change in electric field is not determined by intervalley scat-
tering Ias it is at higher fields; see Figs. 2(a) and 2(b)]; and Nonequilibrium descriptions of the dynamics of elec-
thus, it is faster than at higher fields. At lower fields, the trons in a semiconductor under the influence of space-time
single- alley nonequilibrium moment theory results for the varying fields have been presented. These descriptions are
mean energy are in very good agreement with the Monte valid in different macroscopic space-time scales which are

-8-
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FIG. 3. Time dependence of the applied field correspondinig to the results
shown in Figs. I and 2- (a) high-field and (b) low-field cases.>

determined fr-om the characteristic scales of the moment
equations. The results that have been presented in this paper < 0.5-

0 correspond to the lowest-order solutions of these descrip-
tioi,. In the fastest scale (S,), these lowest-order results
have been shown to be in reasonable agreement with those
obtained from a kinetic description. A number of issues re- o L___________________
main to be addressed. Among these issues are (a) the 0.02 0.04 0.06

(more) quantitative description of the S, state, (b) the rela- Mean Energy (ev)

tive importance of higher order terms in the expansions off,, FIG. 4. Phase-space plot of the evolution of the electron assembly. The let-
and of faster time scales (S, or higher), and (c) the relation- ter-, I and F correspond to the initial and final states. The arrows indicate the

ship between a description in terms of S, and a modal de- di rcctton ofevolution. The solid line with arrow corresponds to the response
of te d fuctin. hes isueswil be InI the S, description; the line without arrows corresponds to the S, descrip-

composition oftedstribution tucin hs suswl e Iion (a) and (b) correspond to field changes shown in Figs. 3(a) and 3(b).
discussed in a future publication, respectively.
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IV. ELECTRON ENERGY I)ISTRIBUTIONS,
TRANSPORT PARAMETERS, AND RATE
('0IF:FICIENTS IN GaAs

I. INTRODUCTION fra-iig functions of energy. standard iniplemenItaro01s of

thu hchat ror elan ,.,cnb., f thisconcept leads toa %cry large number offictitious scatter-
, - onductor. And 1rtnnced by ing ents alon the carrier trajectories, and thus results in a

. i ., hIS.,~ Jdcrhbed b\ thle e-depn- furher increase in the computation time. We have devel-
-hution. oik,r.t). in contigu- oped a technique for reducing the number of self-scattering

': r : m k "paee. In ntihivafley semi- e,.ents. Consequently, for a given CPU (central processing
,, : h , J uiic ,tccti c r,, I each ,,aliev. ai unit ) time, more test particles can be used in the simulation..ra a ,!.,,y Wr in term I lta single distribu- This results in a reduction in the fluctuation ofthe calculated

Sn.! tn ;,ji. et he .ldckJlate. Moeoer, transport quantities. This technique is discussed in the next section in
,ar.11lCIN '1nd r1,1 COtbeicnits that appc.r in a single-val- the context of two generic time dependencies of the applied

!c.\ hdr,,\ n,,ni: model do not reflect in such cases the field, namely, dc and a step change. In Sec. IV, results from
J\i,' ,aic, of the carrh.r,,. I I,, is especially true for ',alues of simulations of the steady-state behavior of electrons in a
Applicd icld \\here inter'allen scattering is significant. In three-valley model of GaAs are presented. Concluding re-
lhcc cass,. the transport parameters not only depend on the marks are given in Sec. V.

tranport properties. but also on the rate coefficients. For
example. drift \,clocitv. defined as the time rate of change of II. THE MONTE CARLO TECHNIQUE
the center of mass ofa iroup of electrons.- will depend on the In the Monte Carlo approach for simulating the behav-
a'.eragcd inter'alley scattering rate. This is due to the fact ior of carriers in semiconductors and influenced by space-
that carriers mo\ ing with thegroup are scattered into valleys time varying fields, the initial distribution of carriers
x,,ith different masses (and consequently different dynam- [ f(k.r,0) ] is specified. An initial number of test carriers are
ic, resulting in a change in the center of mass without (nec- then selected that are representative of this distribution, and
ess,aril, ) any transport. Thus, in these situations, a multidis- their evolution simulated using statistical methods.2- "'i In
tribution description of the behavior of the carriers is this paper, it is assumed that energy e ofan electron is related
desirable at both the kinetic [ f, (k.r,t), where a denotes a to the wave-vector k through the equation '

"

particular valley ] and hydrodynamic (in terms of moments
of thef,s) levels.

The distribution function, transport parameters, and where h is the Planck constant divided by 2,-, in is the effec-

rate coefficients in each valley can. in principle, be obtained tive mass of the electron with zero energy in the valley, and a

from Monte Carlo simulation' " or front solution of the is the nonparabolicity parameter. m and ct depend on the

Boltzmann transport equation (BTE) by either iterative'" valley in which the electron is found. Equation (Ia) repre-

or analytical' i techniques. At present, the Monte Carlo sents a nonparabolic energy band with spherical constant
approach has a number of advantages over the BTE ap- surfaces and a scalar effective mass m. For a nonparabolic
proach: it is relatively easy to implement a six-dimension energy band with ellipsoidal constant energy surface, the
(k.r) space simulation: it can be easily modified to accom- e - k relation is given by

modate any number of interactions between the carriers and h2( k 2 kk
the background: and it provides considerable physical in- + = E(k) 1 + ae(k) (b)" 2 (m, m,
sight into the behavior of the carriers, including fluctuation
phenomena. where m, and m, are the longitudinal and transverse compo-

In the Monte Carlo approach, the accuracy of the re- nents of the effective mass tensor,'"' and k, and k, are the
suits depends (a) in transient situations, on the number of longitudinal and transverse components of the wave vector

electrons used in the simulation, and (b) in steady state, on of the electron. For the values of field of interest. Eq. ( 1 )

the total number of scatterings. A major drawback of the represents a good approximation to more accurate represcn-

Monte Carlo approach is that the simulation takes a consid- tations for the band structure. Moreover, the use of Eq. ( I )

erable amount of computer time, even when very few elec- in the trajectory equations is consistent with the formulation

trons are used. This becomes more serious when simulating, of scattering rates as functions of energy, which assumes an

for example, the behavior of electron in a multivalley semi- energy-momentum relation given by Eq. ( 1 ).

conductor subjected to low electric field. In this case, a very Note that it is sufficient to only discuss the case of an
energy band with spherical constant energy surfaces [Eq.

small fraction of the electrons gain sufficient energy to popu-
late the upper valleys through intervalley scattering. For ex- (Ia) 1. The resulting equations are also valid for the ellipsoi-

ample. in GaAs, less than 2% of the electrons are in the X case fEq. (Ib) ] if m is replaced with free-electron mass,

valleys when E = 20 kV/cm (see Fig. 4). Thus, to obtain an and the wave vector and electric field are replaced with the

accurate representation of the behavior of the electrons in Herring-Vogt transformed values. 5''

the X valleys, it is necessary to use in the order of tens of The flight of an electron between scattering events is

thousand electrons in the Monte Carlo calculation. Such a calculated using the equation of motion (h 3, K = qE) and

large number of electrons make this approach, in some cases, either Eqs. (la) or (lb). The time r, between scattering

prohibitive, events is determined from the equation2-

To simplify the computational aspects of the Monte R = I - exp v, r (t) ]dt (2)
Carlo approach, Rees' " introduced the concept of self-scat-
tering. However, when the carrier scattering rates are in-



Iwhcre R is a uMIf rntlv distributed random numberin lthe proposed. v' (C) is given by

intcral 0, 1], and vI  is the total scatteringz ratIC.\ hiCi ,, al
Iinction of the time-dependent electron r>cnr -N() -

T he in teu ra I (2 ca nln ot inI gc tler ,) , c C I.d 1 2

itc ,tt,'jallv. To o. erem,. IC t his di liC , a fict t it Ius sa ter- where c is a suitable boundary between two energy regions

112 C',cut s introduced such that the "re ." total scatttcrtng w 1th constant scatte ing rates, namely v,.I and v1 2  [see Fig.

* rate l', I ould be constant.' This 1-, is takemi to be greater 1 b) I. The constants vrI and v r 2 are constant total scatter-

or equal to the minimum constant that makes , I ing rates which include self-scattering. 1, is then obtained

tive for all e in the expression [see Fig, 1(a) front Eq. (3), as discussed in Ref. 2.

The step-shaped total scattering rate, v'-(E), outlined
S v l(.) - E) . / above does not significantly decrease the simulation time

v_,. (e) is the scattering rate for the fictitious scattering unless more steps are used. On the other hand, the use of
mechanism. This process causes no changes i the properties more steps cause difficulty in the implementation of the

* of the electron along the trajectory. That is, the state k' of an scheme. This is because situations in which an electron tra-
electron after a self-scattering event is taken to be equal to its vels across two or more energy regions without suffering any
state k before the event. With v, in Eq. (2) replaced by v, scattering have to be considered.
(which is constant), the integral in Eq. (2) is evaluated, and To significantly reduce the number of self-scattering
the duration of the free flight t, is found. The procedure for events while keeping the implementation of the scheme rela-
determination of the scattering mechanism and direction tively simple, we propose the following scheme: (a) change
has been described in the other papers.2'4 From Eq. (3), note the integration variable in Eq. (2) from time t to momentum

* that the number of self-scattering events is always much k; (b) use a quadratic polynomial to represent the total scat-
greater than the number of real scattering ecnts. 'Io reduce tering rate (including self-scattering) v,.; and (c) use the
the number of self-scattering events resulting from the use of energy-momentum relation, Eq. (1), to carry out the inte-
Eq. (3), a step-shaped total scattering rate v',(e) has been gration.

Following this procedure, let vT(E) in Eq. (2) be given
by AT; that is,

* (e) =A +BE(l +aE) , (4a)

and using Eq. (1),

0,r(k) =A + B(h 2k 2 /2m), (4b)

where A and B are constants, which are chosen from the
requirement that vlr (E) in Eq. (3) must be positive and as

* small as possible in the energy range of interest [see Fig.
>_ 1(c) ]. After changing the variables of integration from t to
< I-- k, and utilizing Eq. (4) and the equation of motion, Eq. (2)

becomes
cc

f k= -In(I-R,), (5)
(b) qE 2m qE

z where ko is the initial value of the longitudinal component
Lu of the wave vector k, k2 = k + k + k ', and we have tak-

-< C, "en E along the z direction. E in Eq. (5) may be either space-
time dependent or constant. The piecewise application of

._< -  Eq. (4b) in the energy interval of interest results in further
reduction of the number of self-scattering events. The result-

(C) ing total rate v', is further discussed in the next section.
Since space-time simulations are implemented as a se-

ries of time intervals in which the field is constant in time,6"7

it is only necessary to investigate the generic problems of
constant and step field variations. These two cases are con-
sidered below.

ENERGY (ARBITRARY UNIT) 1. Static electric field." In this case, Eq. (5) reduces to

0 FIG. t. Energy dependence of the total scattering rates. The solid lines rep-
resent the total scattering rate vr (c). The dashed lines represent (a) a con- k3 +3(k, + 2 mA k + 6mqf In(I -R,)
stant total scattering rate v;, (b) a step-shaped total scattering ratev.(e) , +f hB) Z Bh"
and (c) a total scattering rate v (E) given by Eq. (9 a). M is a maximum 6mA 2 3

electron energy; e is a suitable boundary between two energy regions with - - k '-" + 3k 1k, + k 0, (6)
constant scattering rates. (h 'Bk)
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hee t,+ he ti transerse coniponent of the Natterirgs. [he intervalley separations A, , and Ac,
%01t or \. t1h i, ont ,nt during the free flight. Since ha,e been taken to be equal to0.33 and 0.522 eV. rcspectie-

11t o t1\ one real root, it silttplific, the determination Iv. " A list of the material parameters that have been used in

k,, at the end of the free flight for a given random number the simulations is given in Table I. The values given in paren-

R lied urat ion ofthC free flight 1, is then obtained from the theses are those obtained by Pozela and Reklaitis' from best

.'uattitI of motion. fit to the data of Houston and Evans. "

2. S"P cbezlrt I d.1J The case ofa stp variation in time To get an accurate representation of the steady state of

of tile applied field can be treated in a similar way as for a electron behavior in each valley, up to 80 000 electrons have

,on,,tait field. Let the applied field be in the : direction, and been used in the simulations-' (each electron suffers at least

equal to Es for t , and E, for t > to. To determine the state 1(X) collisions). The sampling procedure has been discussed
of the electron at the end of a free path. it is necessary to in detail elsewhere."
krio%. the locationi oft he free fli,'ht relative to that of the step.
This give-s rise to two situations: B. Illustration of gain in computation time

i ) An electron ends its free flight at t t, or starts the To illustrate the gain in computational speed that has
frec flight at t t,. In these cases Eq. (6) is solved for the been achieved with the technique presented, we have carried

longitudinal component of the wave vector k. at the end of out comparative simulations with the three total scattering
the free path, wkithin E = E, or E = E,,, respectively, rates discussed in Sec. II, namely, v), v, ' , and v"'. The

iii An electron begins its free flight at I < t1 and ends it rate v'"' is a modification of ' obtained by piecewise applica-
at t> t. In this case, the integral in Eq. (5) can be decom- tion ofEq. (4b). We have used v4' for the rate in the F valley

0 po,,ed into two regions I namely, E = E, and E = E, ) and in one of our illustrations. Note Ih~t vt' approaches ,; InI a
ntegrated to giv e given interval when B-0. Thus, V1 is the most general rate

S ( 2nk bmqE[+ that can be used to represent the total scattering rate while
k -3 k \ k: i [in(I- R,-+-C,-+-C,]

k h 2B) B17 I --still being able to carry out the integration in Eq. (2). This
(6rnA can be considered as the use of quadratic splines for the rep-

- - 3k 'k, + k J = 0. (7) resentation of the actual scattering rate. That is, in the F
w he hB /valley, the energy interval is divided into two domains

where (E < AEr and E> AEFL ) and Eq. (4b) is applied to each

C, = (Ah/ hqE, )(kz, - k,,) = A(t, - to) , region. For -<ArL, B is taken to be zero for illustration
C, = ( Bh '/2mqE, k I ( kz - k,, )(see below for further comments). The results are shown in

h2 - Table II. For the same number of electrons and simulation
+ l( , k ] time ( 10 ps), the number of real-scattering events are ap-

t,, is the initial time of the free flight, and k. is the longitudi- proximately equal. The number ofself-scatterings (and total

nal component of the wave vector of the electron at t = t . scatterings), however, is considerably different. This also

The longitudinal component of the wave vector k, at the end applies to the computation (CPU) time. As seen from Table

of the free flight is determined by solving this cubic equation. II, the computation time for the Monte Carlo simulations
using v, (constant total scattering) is approximately an or-
der of magnitude and four times larger than the computation

Ill. ELECTRON ENERGY DISTRIBUTIONS, TRANSPORT times for simulations using 0T [Eq. (4) ] and v- (piecewise
PARAMETERS, AND RATE COEFFICIENTS IN GaAs constant total scattering), respectively. Further reductions

The Monte Carlo technique presented in the previous in the number of self-scatterings were obtained with 0. (see

section has been implemented to obtain the steady state and Table II).

step response of electrons in GaAs. As mentioned in the At 10 kV/cm, the mean energy of electrons in the r

previous section, these are the two generic problems which valley of GaAs is about 0.23 eV below the threshold energy

form the basis for simulations with arbitrary time depen- AErL. As mentioned in Sec. II, for this mean energy, the

dence of the field. In this paper, the steady-state results are electron scattering rate in r valley of GaAs is nearly con-

discussed. The transient results are to be discussed in a fu- stant and results in a large self-scattering rate with the appli-

ture publication. In Sec. III A, further computational details cation of vq for the whole interval. Thus, in Table II, the

are given. In Sec. III B, the gain in computation time that results for 4g(E) show approximately 200 self-scattering
has been achieved with the technique presented in Sec. II is events (more than 50% of total scatterings). This number is
illustrated. The results for the distribution function, trans- reduced to less than 100 self-scattering events with the use of

port parameters, and rates coefficients are presented in Sec. 4q as shown in Table II (approximately 30% of total scatter-
Ill C. ings). The number of self-scattering events is expected to be

less if the constants A and B used for v4'(E) in each energy

A. Further computational details region are optimized by properly partitioning the energy in-
terval. By dividing the total energy interval into more sec-

a three-valley model (,LX) of GaAs has been used. The tions and applying to each section an equation of the form of

satringl pode t ) ohave been taken into account are Eq. (4), the coefficient A, and B, (wherej denotes thejth
scattering processes that have bee an inta ae section) can be chosen to minimize the number of self-scat-
polar optical, acoustic phonon, intervalley, and intravailey tering.
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TABLE 1. GaAs material paramneters'

Density (g/cm') l o (5 37)

Sound %elocity (cii s) 524 0' (52- 10')
Static dielectric coii'tait 12.)

Optical dielectric COIix1iali 10 2

LO0 plioion cncrgy k cVi 1 t .0 1 O 0.162)
Energy scparatioii (cV)

r-L 033
r-X 0.522 (0.52)

t- t((X )) I,( 111I) X(000)

Nonparabolicity (eV -1 0.01 (0.02) 0.461 (0.5) 0.204 (0.3)

Effective mass (,n*/m,) 0063 0.222 (0.17) 0.58
,coustic deformation
potential (eV) 70 '.2 (7.0) 9.7 (7.0)

Intervalley phonon
energy (eV) r0(0) L(OIH) X(100)

F(000) 0 0.0278 (0.0299) 0.0299

L(I11) 0.0279 (0.029) 0.029 (0.0299) 0.0293 (0.0299)
X(100) 0.0299 0.0293 (0.0299) 0.0299

Intervalley coupling
constant ( 1W eV/cm) F(000) L(1ll) X(100)

r (000) 0 1(0.18) 1

L(III) 1(0.18) 1(0.5) 0.5(0.1)

X( 100) 1 0.5(0.1) 0.7(l)

'See Refs. 18 and 19.

C. Steady-state behavior of electrons in GaAs above 10 kV/cm, a population inversion is observed in the F

1. Energy distribution functions valley in agreement with the results of Fawcett and co-
workers4

.
22

.
2
' and Conwell and Vassell.S This inversion is

To elucidate the physics of the steady-state behavior of due to the fact that intervalley scattering is nearly isotropic,

electrons in a three-valley model of GaAs we have obtained whereas polar optical scattering is primarily forward. On
the energy distribution of the electrons in each valley. These average, half of the electrons scattered from the L to the I'
distributions are shown in Fig. 2. valley near the threshold energy AErL lose energy to the field

At low and medium fields (below 20 kV/cm) where the and thus move to energy states below AErL .Since intervalley
population of electrons in the X valleys is not significant, scattering in this range is zero, these electrons represent an
these distributions have similar features as those obtained by "uncompensated" source into these states, thus creating the

Fawcett and co-workers 4' - 2' and Conwell and Vassell. 4 As observed population inversion. This type of distribution is

the field increases from zero, electrons are heated up rapidly not stable and should lead to collective excitations (plas-
due to invariant polar optical phonon scattering4 and the mons). 24 These excitations, however, are not taken into ac-

distribution begins to flatten. However, because of strong count in this model. However, in contrast to the two-valley
intervalley scattering, electrons with energy above the model, the population inversion is not very pronounced so

threshold for scattering into the L valleys (ArL ) are driven that the plasmon excitation rate should be small.

into equilibrium with the L distribution. This distribution is At higher fields (above 20 kV/cm), electrons in the L

nearly a Maxwellian at the lattice temperature. For fields valleys (as well as the tail ofthe F distribution) begin to heat

TABLE I. Comparison ofcomputation time for the techniques described in Sec. 11. Simulation time is 10 ps. E = 10 kV/cm.

Number of Number of Number of CPU

Function for total scattering real scattering electrons time

total scattering rate for single electron for single electron in simulation (min)

Constant total 11000 150-190 2000 196
scattering rate vs.

Three-level step-shaped 2300 150-190 2000 49
total scattering vr'

Eq. (4) rate 350-390 150-190 2000 21
4

230-290 150-190 2000 17

*See Ref. 21.
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an and the L distribution rand tail of F distribution) begin T---- .... ,
[o, tttcn+ see Lu. 2 ).A\ain, strong intervalley scattering
,lI, thle tal of tile L. distribution and ,he part of the F

tl',lhutlthn oho\c the threshold for scattering into the X
., into qulibrium with the X distribution. This distri- i - .

buton is nearl a Maxs, ellian at the lattice temperature. -

lIii', heha,, tor is sHm lar to what happens between the L and - - .

I %,illc s at lo % ields. VL-"

Akt muclh higher tield,, ( aboe 50 kV/cn ), the X distri-

bt ,on alko heats up. This leads to tie heating of which in p
t /

/ / .

lurn heats up the tatl of the F and the L distributions, and all -4

,hrCe distributions be-i to flatten (see Fit. 2). In this mod- 2 / /

cl. there are no other mechanisms for cooling the tails of the 2 /

distributions. As previously mentioned. scattering into the" A ' / /

'alleCN prevents the population inversion in the F valley to E/
h aconie as pronounced as in a two-valley model. For the _
iCilds investigated no population inversion is obserxed in the I

L or F ,.alleys due to the flux of electrons from the % valleys 10" -

near threshold, although the trend for such a condition is

e% ident. ,, '

2. Rate coefficients i

Macroscopic (moment) descriptions of carrier dynam- 1 I ,
ics in semiconductors require knowledge of the rate coefli- 0 10 20 30 40 50 60 70

cients that appear in the corresponding equations. In a one- ELECTRIC FIEL(AV/cm)

moment description (in terms of the continuity equations FIG. 3. Averaged transition rates as a function ofapplied electric field. Sol-

for carrier densities), the necessary rates are the averaged id lines represent the transition rates from upper to lower valleys. Dashed

Mar loss rtes At applied fields, for which the lines represent the transition rate from lower to upper valleys.

f11)LIlaIt () I h upper alleys becomes significant, a multi-
' ll, im:crospic ,.cscription is dsirahle. In this case, car- V, S(k)f(k)dk,
FieF11 ,al r l o ,,\ i7 ,..',/ h valle,. I,, d Lie M 10 ,o artier densitiesJ

and at lie..lds ll( v0h!ch impact i'mizattion is negligible) to where i and j represent the F, L, or X valleys, S, is the

lntctallc scattering. microscopic intervalley scattering rate from the i valley to

With the code described in Sec. I1. we have obtained the thej valley,f is the distribution in the i valley, and N, is the

averaged tover the distribution) intervalley scattering rates population of the i valley. Their field dependence follows

for carrier gain or loss as a function of applied field. The rates from the behavior of the distributions and the microscopic

are shown in Fig. 3. These rates are defined as follows: intervalley scattering rates. Since the microscopic scattering

,fr (e)

-- I _ I

- -- \"- N €

., FIG. 2. Energy distributions of electrons in each
- , K valley of GaAs for different electric fields. The

" " 'numbers correspond to the applied electric fields in
" \~ 700" . kV/cm.

- V , 50 0 \'

00 200 \ 3 0\

00 03 06 09 12

*Meaq Energy (eV)
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r,+,tu-, t*,i Kpcr to Io\%cr ,,tile.,, hare no strong enrgy propcrtics which are not clearly exhibited in simulations

Il h dlt[bution Iunction ili the ipper 'val- '. tiltuC lreluct.ation1, sniall +:mbcr of particles Here.
,, ,,, n ,t . . t rz itica Ntly v, ith ficld (see Fig. 2), the ; .prc,,ent the r.suh-, 'c h, a obto incd f,.,r the aerage,-
, , tI !,,. I, u t 10[, lC:ad to nearly constant average ,cu,, and the mnt. eerli } for electrons in each ,alley.

111,1_' 1:Itc, On the other hand, scattering from lover Fli ae cc ON ,elocitv in each valley is shon iin Fig. 5 ( a)
to i pye . .t!!L. , l, c, the tail of the corresponding distri- a,, a func. ion oflicld. Also shovn is the total a),erage velocity
hvt u :.c ,,hIs electrons with energy above the thresh- (. ( aCra-cd,., ocr all electrons irrespective of their valley)
ol ,alI p te,'tpato I. Since the tail ofthe distribution are very antd rcprescntat e experimental results" The total
•N , sct tO tChe field, the folding of the two functions is iscragc velocity has a niaximrnum at a field equal to 3.8 kV/
stto-gl,, ficld dependent. cm and rapidl. decreases with increasing field until it be-

At lov, ticld, the average rates for scattering into the comes nearly con.,tant for fields above 10 kV/cm [see Fig.
upper salle%,s are smaller it-,.t their respective inverse rates. 5(a) 1. This behavior is well known and is the result of inter-

S..s the field increases above 3.5 kV./cm (see Fig. 3), the valley scattering (which is isotropic) and the fact that the
a Z7ragesattering rate ittotheL valleys, 'FL, becomes com- electrons have a higher effective mass in the upper valleys.

parable to its int' erse v,-, (higher than 10% of VLr ), and the At low fields (below 10 kV/cm), our calculations of
population of electrons in the L ,,allcys increases drastically average veiocity arc in good agreement with the results of
( ,ce Fig. 4). Abo e 35 kV/cm, the average scattering rates Ruch and Kino.> However, the calculated peak velocity is
into the %\ all. s. I'[ .. and vx, become comparable to their slightly lower than the experimental value which occurs at
respective inverses. V,, and vi , resulting in an increase itl 3.5 kV/cm. In the high field range (above 20 kV/cm ), our
the population of the X ,alleys ss ith a concomitant decrease calculations of average velocity fit the data of Riginos ?.,'',,

in the population of the L valleys (see Fig. 4). As previously well for values of fields up to 70 kV/cm. These values are
mentioned at these fields, the tail of the distributiotns heat up 16% higher than those obtained by Houston and Evans. "
due to the heating tIp of the population (see Fig. 2). The These differences are reflected in the values of the material
,tattering out of the A' valleys into the L and F valleys is parameters used in the calculations (see Table I ). The frac-
grcater that out of the L valleys into the F sallev. This has a tion of the electron population in the upper valleys as a fune-
considerable effect on the dynamics of the carriers at these tion of field is shown in Fig. 5(b). This figure covers the
fields in steady state and in transient situations. This is illus- range of fields near the maximum of the total average veloc-
trated in the ne,' section with regards to the steady-state ity and illustrates thd+-reasc in (v) as the population in thc
transport parameters. upper valleys increases. The F valley average velocity (v,)

is observed to reach a maximum at a larger field, namely 5.5
kV/cm.2 ' Between 5.5 and 10 kV/cm, (i,, ) makes a "transi-

3. Average velocity and mean energy tion" to a lower value and remains nearly constant with field
The technique discussed in Sec. II has permitted the use until at 35 kV/cm a second "transition" to a lower value is

ofa large number ofelectrons in our simulations. As a conse- observed. These transitions have, in part, the same origin;
quence, we have been able to observe steady-state transport namely, the fact that intervalley scattering is isotropic. For

1.00.

300 K

>.0.75 -

U

0<
z

0 0.50 -c 0.I IG 4. Fraction of electrons in each valley as a
U ' function of applied electric field.
w

0 7 (000)

0" / -'

10 20 30 40 50 60 70

ELECTRIC FIELD (k V/cm)
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icid,, abo\e the firl~ critical tield. scattering lrnni I. a lie, polar scattering. Above 10 kV/cn. ,hcic populati , mcr-
toI' ,.illvc .nd ,01C' lh cicctroi monlciltum III the I sion is observed in the F valley, the strong inlersalle, ,cat-

And A, t hi.ie lilt cc - prcs,, takesenergetic electrons out of the r valley,

,e.d htet hc plpulation in the L is , ,,r,.cd Irl, reducing the rate of average energy increase. In the
I,* jecrFca..e s, dih c g'ing'iiiitat licrcasc int lic popili ii oilol" upper valleys. the average energy varies almost linearly with

the X allC\, N,,cc Fi. 4'. Since the scatteriinz from the X field. This is due to the high intervalley scattering rate in the
, le ilto the F saIlc,, iN alwaynls larger than scatterin from upper N alle) s.

dtie L allc s, there is aI inlCreaCae in) the nunLibe1hCr of'eleetrons

ss ith random momentum t ransterred into the F %tile% above IV. CONCLUDING REMARKS
3 k~icm. This cfcc )mv ers the i N ciage ,elocity. A sligh In this paper, a technique for implementing the Monte

decreases in, the slopes of both i) and (r]) are also oh- Carlo Method with self-scattering has been presented. This
ser).ed. From Fig. . the rmobilities In tile line~ar reCgion areseruted From Fig. 50. obiitd s in, , the ar region are technique leads to large savings in computational time, and
.\calCllated to be SSOO. 520. and 110 emV for die 1. . and thus allows, for a given CPU time, an increase in the number

Tes, are elctron eneginac lof tcst p,-rticles used in the simulation. This reduces the sta-
lowest energy are illustrated in Fig. 6. FIor I, , tistical fluctuation in the calculated quantities. With a codeelectron energy in the F vallev increass rapidl \ith lid, that uses this technique, we have investigated the steady-
elecron t erg i the iatey s ct pi isfill rialt state behavior of electrons in a three-valley model of GaAsand influenced by a dc electric field.

Ruch and Kino 0
/ ""Houston and Evans A

Rigmnos U

A A

/ - ,,- . -. - . FIG. 5. (a) Total average velocity ()and the
- - average velocity in each,.alley as a function of

.. . ..... I t I applied electric field. Also included are the ex-
20 '9 30 40 50 60 70 perimental results by Houston and Evans (see

EI Il- i IE I.) (k V/CM) Ref. 20), Ruch and Kino (see Ref. 25), and

Riginos (see Ref. 26). (b) Total average ve-
.50:.2 locity (v), the average velocity in r valley

300*K - .- mo (Vr), and the fraction of electrons in upper
/ valleys (short dashed line) as a function ofap-

/ plied electric field for fields near and below the
"< velocity maximum.

S2.0
3.15"w

0 1/ z

.1.5 1 (
-(b) z

/ -0.1w, I C.,

> -,

(51.0 LL
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FIG. 6. Mean energy of electrons in each valley
relative to its lowest energy as a function of ap-

0 2 - / plied electric field.z
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/

( 00 -)
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.\t lo\% fields, the results obtained agree well with pre- lar. the population inversion observed in the r valley for
IOuI theoretical and experimental results. At high fields, we lields above 10 kV/cm is not as pronounced (as it is in a two-
,ae +,bserved a second transition region where the average valley model).

., n the F vallev rapidly changes with field. This In fast transient situations, due to the differences in scat-
• chan~c P,, due to the increase in the population of the X val- tering rates, a three-valley model of GaAs is desirable for

lc\, and the large X-to-F scattering rate. This process also describing the dynamics of the carriers. The results present-
has an effect on the behavior of the distribution function, ed in this paper can be used in the development of a three-
electron population in each valley, and the transport param- valley hydrodynamic model.
eters for tields at and above the transition region. In particu-
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Moment Descriptions of Electron Transport in Multi-
valley Semiconductors.* M. CHENG, E. E. KUNHARDT, Weber
Research Institute, Polytechnic U. -- A multi-valley moment
description of carrier transport in semiconductors is presented that
makes no apriori assumptions about the shape of the carrier
distribution in k space. It is based on the macro-kinetic model' for
electron transport. In this model, a macro-kinetic distribution
function is obtained in terms of carrier mean energy and
momentum. This distribution is then used to evaluate the
unknown rates and parameters in the multi-valley moment
equations. To illustrate the theory, the results obtained from
single-valley and multi-valley moment equations are compared to
those obtained from a Monte Carlo method using a multi-valley
model.
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Macro-Kinetic Models of Electron Transport in
Semiconductors.* E. E. KUNHARDT, M. CHENG, Webe
Research Institute, Polytechnic U. -- A nonequilibrium macro-
kinetic model that describes the behavior of carriers in a
semiconductor subjected to space-time varying fields has been
developed. The model is obtained by proper closure of the
moment equations through the introduction of a macroscopic
carrier distribution function, fM. This distribution is shown to obey
a macro-kinetic equation i which, together with the finite set of
moment equations, constitutes the model. This set can be used to
describe the nonequilibrium behavior of carriers in the time scale
corresponding to the characteristic times of the moment equations.
Three levels of descriptions have been obtained by ordering the
moment equations according to the characteristic times. The first
three characteristic times are ordered as follows: r > r, > rm,
where r, r, and 7m are carrier, energy and momentum relaxation
times, respectively. The first (SI), second (S2 ) and third (S3 )
levels of descriptions are valid for times in the order of r, r,, and
Tm, respectively. Results obtained for carrier transport in GaAs
are presented.
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